Differential responses to high-frequency electrical stimulation in brisk-transient and delta retinal ganglion cells


Retinal microprostheses strive to evoke a sense of vision in individuals blinded by outer retinal degenerative diseases, by electrically stimulating the surviving retina. It is widely suspected that a stimulation strategy that can selectively activate different retinal ganglion cell types will improve the quality of evoked phosphenes. Previous efforts towards this goal demonstrated the potential for selective ON and OFF brisk-transient cell activation using high-rate (2000 pulses per second, PPS) stimulation. Here, we build upon this earlier work by testing an additional rate of stimulation and additional cell populations. We find considerable variability in responses both within and across individual cell types, but show that the sensitivity of a ganglion cell to repetitive stimulation is highly correlated to its single-pulse threshold. Consistent with this, we found thresholds for both stimuli to be correlated to soma size, and thus likely mediated by the properties of the axon initial segment. The ultimate efficacy of high-rate stimulation will likely depend on several factors, chief among which are (a) the residual ganglion types, and (b) the stimulation frequency.

2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)